Involvement of protein synthesis and degradation in long-term potentiation of Schaffer collateral CA1 synapses.
نویسندگان
چکیده
Expression of synaptic plasticity involves the translation of mRNA into protein and, probably, active protein degradation via the proteasome pathway. Here, we report on the rapid activation of synthesis and degradation of a probe protein with the induction of long-term potentiation (LTP) in the hippocampal Schaffer collateral CA1 pathway. The proteasome inhibitor MG132 significantly reduced the field EPSP slope potentiation and LTP maintenance without acutely affecting basal synaptic transmission. To visualize protein dynamics, CA1 pyramidal cells of hippocampal slices were transfected with Semliki Forest virus particles expressing a recombinant RNA. This RNA contained the coding sequence for a degradable green fluorescence protein with a nuclear localization signal (NLS-d1EGFP) followed by a 3'- untranslated region dendritic targeting sequence. NLS-d1EGFP fluorescence remained stable in the low-frequency test stimulation but increased with LTP induction in the cell body and in most dendritic compartments of CA1 neurons. Applying anisomycin, a protein synthesis inhibitor, caused NLS-d1EGFP levels to decline; a proteasome inhibitor MG132 reversed this effect. In the presence of anisomycin, LTP induction accelerated the degradation of NLS-d1EGFP. When both inhibitors were present, NLS-d1EGFP levels remained unaffected by LTP induction. Moreover, LTP-induced acceleration of NLS-d1EGFP synthesis was blocked by rapamycin, which is consistent with the involvement of dendritic mammalian target of rapamycin in LTP-triggered translational activity. Our results clearly demonstrate that LTP induction not only leads to a rapid increase in the rate of protein synthesis but also accelerates protein degradation via the proteasome system.
منابع مشابه
Spatial Learning and Memory in Barnes Maze Test and Synaptic Potentiation in Schaffer Collateral-CA1 Synapses of Dorsal Hippocampus in Freely Moving Rats
Introduction: Synaptic plasticity has been suggested as the primary physiological mechanism underlying memory formation. Many experimental approaches have been used to investigate whether the mechanisms underlying long-term potentiation (LTP) are activated during learning. Nevertheless, little evidence states that hippocampal-dependent learning triggers synaptic plasticity. In this study, we in...
متن کاملCysteamine pretreatment reduces Mg2+-free medium-induced plasticity in the CA1 region of the rat hippocampal slices
Extracellular population responses are largely preferred for the study of long-term potentiation (LTP). The effect of Mg2+-free medium on changes in activity and plasticity of Schaffer collateral-CA1 pyramidal cell synapses was examined. Hippcampal slices from cysteamine-treated (200 mg/kg, s.c.) and saline-injected (1 ml/kg, s.c.) albino rats were perfused with ACSF. Population spikes (PS) wer...
متن کاملCysteamine pretreatment reduces Mg2+-free medium-induced plasticity in the CA1 region of the rat hippocampal slices
Extracellular population responses are largely preferred for the study of long-term potentiation (LTP). The effect of Mg2+-free medium on changes in activity and plasticity of Schaffer collateral-CA1 pyramidal cell synapses was examined. Hippcampal slices from cysteamine-treated (200 mg/kg, s.c.) and saline-injected (1 ml/kg, s.c.) albino rats were perfused with ACSF. Population spikes (PS) wer...
متن کاملThe effects of CCK-8S on spatial memory and long-term potentiation at CA1 during induction of stress in rats
Objective(s): Cholecystokinin (CCK) has been proposed as a mediator in stress. However, it is still not fully documented what are its effects. We aimed to evaluate the effects of systemic administration of CCK exactly before induction of stress on spatial memory and synaptic plasticity at CA1 in rats. Materials and Methods: Male Wistar rats were divided into 4 groups: the control, the control-C...
متن کاملAcute application of cholecystokinin and its effect on long-term potentiation induction at CA1 area of hippocampal formation in rat
Introduction: It has been demonstrated that cholecystokinin sulfated octapeptide (CCK-8s) can affect synaptic transmission in the hippocampus. Because one of the major experimental models to understand the events happening in synaptic plasticity is To Study the long-term potentiation (LTP), we decided to investigate the effect of concomitant administration of CCK-8s and tetanic stimulation of S...
متن کاملRole of NMDA receptors and voltage-dependent calcium channels in augmenting long-term potentiation of the CA1 area in morphine-dependent rats
The involvement of NMDA receptors and voltage-dependent calcium channels in augmentation of long-term potentiation (LTP) was investigated at the Schaffer collateral CA1 pyramidal cell synapses in hippocampal slices of morphine dependent rats, using primed-burst tetanic simulation. The amplitude of the population spike and its delay were measured as indices of increase in postsynaptic excitabi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 26 18 شماره
صفحات -
تاریخ انتشار 2006